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Preface

This document is meant to provide the reader with a basic understanding of control
systems through the example of PID-based control systems. The reader should note
that the contents of this document are meant to be perused only for the sake of
developing an understanding and are advised to follow the reference books
recommended by their institutions/ professors for formal purposes such as written
exams or research papers/reports.

It should be noted that the systems considered here are single input-single
output(SISO) type, however, the concepts laid out here are applicable to other
combinations as well (MIMO) insofar as concepts of SISO are applicable to them.

It is assumed that the reader is familiar with the basics of Laplace transforms. While
most of the explanation is intuitive, some portions of the document will be theoretical,
and having a grasp on the basics of Laplace transforms would help.

It is also assumed/required that the reader is familiar with basic Newtonian physics

The code used for generating the graphs in this document can also be used by the
reader to practice tuning PID systems using python. The code for the same is provided
on this link:

https://qgithub.com/naughtyStark/Tutorials/blob/master/PI1D.py

The objective of this document is to give the reader some insight into not just how
control systems work but also why they are the way they are, and that the problems
faced in control systems engineering are often outside the scope of controller tuning (as
covered in the state estimation issues section).


https://github.com/naughtyStark/Tutorials/blob/master/PID.py
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1. The where, what and why of control systems:
The 3 questions that one must ask regarding any new subject:

Where are Control-systems used?:

In almost all machines, and at almost all levels. Your laptop uses a control system to
manage the voltage level it provides to the RAM chip, the processor, and so on. If your
car has cruise control, it is using a type of control system. Control systems are not
necessarily just algorithms (although we often tend to study them as if they were). They
can take the form of electronic/electrical circuits or even mechanical apparatus (for
instance, governors used for controlling the flow of water in a hydroelectric power plant).

What are control systems?:

If you google it, you’ll get some formal definition like “A control system manages,
commands/directs, or regulates the behavior of other devices or systems using control
loops”. It is essentially a system(could be equations, could be levers and pulleys, could
be a bunch of resistors and capacitors) that govern the behavior of a system. Let us
take a layman example; consider an office manager trying to run their department. The
office manager is given commands by their boss. The office manager doesn’t know how
to do the low-level tasks, but they have access to employees who can take some
high-level commands and convert them into low-level outputs. The office manager here
takes orders from their boss, converts them into a set of high-level actions, and then
tells the employees what to do. In some sense, even the employee is a control system,
as they convert a high-level command to a low-level command.

In some sense, a control system takes high-level commands and converts them into
low-level commands. But | have a better question:

Why are control systems used?:

In the previous section, | simply referred to commands as being either low or high level
but did not explain what that meant. Simply put, a control system is used when the
thing you want to control(controlled variable), say the speed of a vehicle, and the
thing that you can control(manipulated variable), say the acceleration of the vehicle,
are different but interrelated. For example, it is possible to control the velocity of a car
by controlling its acceleration since acceleration is the rate of change of velocity.
However, one might ask, why not control the speed as a function of position? Afterall
these two are also similarly related.



The reader may be faced with a dilemma like this when creating their own control
system. The answer can be found by observing what the physical system exposes as
possible inputs. The system is usually referred to as the “plant”, named as such
because control systems were predominantly used for controlling chemical “plants” or
hydro-power-“plants”. If by some means it was possible to directly control the position of
the car (which is unlikely but let us just imagine that it was somehow possible) and we
wanted to control the speed, then the manipulated variable would be the position, while
the controlled variable would be the speed.

However, this is usually not the case in the real world; systems are either driven by
forces or torques. The forces (or torques) produce an acceleration, which results in a
change in velocity, which results in a change in position.

Therefore, as far as most physical systems are concerned, one needs to look at which
input to the plant is an n" order derivative of the controlled variable(s). (For example,
acceleration is the first-order derivative of velocity and 2nd order derivative of position).



2. A heuristic approach towards deriving the PID control system:

2.1 Intuitive approach| The valentine’s day example:
Assume that you have bought a bouquet of flowers for your significant other. Consider
that your partner is at the center of the football field, and you are at one of the edges, on
a bicycle that has rockets strapped to both ends facing in opposite directions.

position =0, error=1 osition = 1, error =0

—4
your as: ed partner

bouquet

Figure 2. valentine’s day example

Assume that the partner is at a distance of 1 unit (this unit could be 100 meters). We
define the error as the difference between your position and the target (partner’s)
position. If you are to the left of the target, the error is positive and vis-a-vis.

Assume that the rockets allow you to control the acceleration (in both directions,
forward and back) directly. Further, assume that we are only concerned with the 1-D
motion; side-sway is not considered (as it is not relevant). You may assume that the
cycle is moving on rails that guide it in a straight line.

Your objective is to move towards your target and then stop at that position.

1) Consider the control law of applying a constant acceleration: You start
accelerating at a constant rate, meaning that your velocity increases linearly,
however, as the distance covered is equal to 0.5*acceleration*time?, the position
value increases exponentially, quickly overshooting the target (assume the
partner is standing to the side so they’re not run over by the cycle). Therefore this
control law is not suitable for our purpose.

2) Consider the control law of applying an acceleration in proportion to the error.
Note that when the error is positive, the acceleration is considered positive
(assuming the right-hand direction is positive). In this case, you have a high
acceleration initially, but as you move closer to the target, the acceleration tapers
off and falls to 0 when you are at the position of the target (error = 0). However,
your speed would be initially = 0 and increase as you move towards the target.



Therefore, you would overshoot the target. The error then becomes negative and
therefore so does the acceleration. This is akin to how a pendulum-bob oscillates
around its mean position. At the extreme position, the bob has no velocity but
maximum acceleration, while at the mean position it has no acceleration but
maximum velocity. While we’re no longer shooting off into outer space like we
were before, we're still not converging or closing in on our target position.

The control law that we just discussed (2) is known as a P-controller. While it appears
useless by itself in this case, there are cases where a P-controller alone is sufficient (we
shall discuss this in the next section).

So how do we reduce these oscillations? An intuitive answer might be to apply some
retardation. The question remains how; as in, what should the control law be. While this
is the intuitive understanding section, some mathematics must be invoked to
understand why something will or will not work.

The P-controller would mathematically look like this:

ait) = K _*e()(1)

gain

Where a(t)refers to the acceleration, Kgainrefers to a gain value, and e(t)refers to the

error. Note that for a setpoint(t)(target) and known current position x(t), e(t) is defined
as:

e(t) = setpoint(t) — x(t)(2)

Note that in eq. (1), a(t) is the second derivative of position x(t). Note about
mathematical notation: x'(t)refers to the first derivative of x(t), x"'(¢t)refers to the second
derivative, and so on. From eq. (2) assuming the target location is fixed, we can infer
that:

a(t) = x"(t) = — e"(t) (3)

And therefore:

e’y = —K_ . e (4)

gain

The reader should note or realize that this is the equation for simple harmonic motion
(hence the oscillatory behavior).



Possible solutions:
Let us now consider the possible control laws that could be added to the P-controller to
reduce the oscillations:
1) Retardation force is applied in proportion to the (1 — e(t)); the closer we get, the
more braking force we apply. (control law dependent on the 0" order derivative
(position) of the controlled variable (position))

2) Retardation force is applied in proportion to the acceleration: the higher the value
of acceleration, the higher the retardation (control law dependent on the 2" order
derivative (acceleration) of the controlled variable (position))

3) Retardation force is applied in proportion to the speed with which we approach
the target (control law dependent on the 1% order derivative (velocity) of the
controlled variable (position)).

Mathematical formulation:
Now, let us formulate the above approaches mathematically.
Let Kpbe the replacement for KGainin the P-controller and Kd > Obe the proportionality

gain for the additional control law. Note that 1), 2), 3) refer to the mathematical
formulation of the ideas described in the previous section “Possible solutions”.
1) For retardation in proportion to the error, the overall control law would look like:

a(t) = Kp* e®) — K, * (1 —e®) .. (i)

= a(t) = (Kp - Kd) *e(t) — 1 (5)

This system would simply oscillate about a different point instead of oscillating
about e = 0. This is akin to an oscillating pendulum inside a train that is
accelerating with a constant acceleration. All that happens is that the mean

position around which the bob oscillates shifts away from the original position.
Thus the oscillations still persist.

2) For retardation in proportion to the acceleration, the overall control law would

look like:
a(t) = Kp* e(t) — Kd* a(t) ...(i)
_ Kp*e(®) .
=a(t) = RO} ...(ii)
1 . Kp*e(t
=a(t) = K p* e(t) whereK ) =(1p+—;((£ (6)

It appears that using this control law is also ineffective as it simply results in a
P-controller with a reduced gain, assuming Kd >0



3) For retardation in proportion to the speed of approach, the overall control law
would look like:

a(t) = Kp*e®) — K,*v(®) ...(0)

If the speed of approach (x'(t)) is v(t), from eq.(2), we can infer that

e'(t)y = — v(t)

=a(t) = Kp *e(t) + Kd * e'(t) (7)

This controller is no longer a re-written P-controller as in the previous cases, but
how do we know that this will work? While we will see a more rigorous
explanation for this in the analysis section, you can intuitively understand it as
follows: at t=0, the approach velocity is 0, but the error is high; The retardation
component (or braking component) is therefore 0 and hence the P-component of
the controller dominates. As you approach the target, the P-component gets
weaker and weaker with the diminishing error while the retardation component is
much stronger due to the higher magnitude of velocity, hence, near the target,
the retardation component dominates and slows you down. This however
requires tuning of the gains for the P and the retardation component.

This retardation component of the controller is usually called the “derivative” term as it
is dependent on the (first) “derivative of the error” (as can be inferred from eq.(7)).

The role of the integral is better understood with a different but similar example:
Consider that you're trying to lift a rock from a height hlto a height hz. Assume you can

directly control the force applied by your hand. Further, assume that you are already
using a PD-controller. In this case, when the rock reaches the target height and has 0
velocity, the force of gravity would bring the rock back down as both the P and D
components are ~0 (no error in position and no motion). As soon as it starts falling
down, the P and D components would kick back into action and try to bring the rock up.
Eventually, the system would settle at some height below the target height.

In such a situation, it would be useful to have an additional component in the controller
that continues to increase the effort as long as the target has not been reached. This
would essentially require integrating the error over time. Even if the instantaneous
error has become 0, the integral of the error would be finite and provide the necessary
balancing force to keep the rock at the desired height.



2.2 Analytical approach:
Let the thing we want to control be the controlled variable c(t)
Let the thing we can control be the manipulated variable m(t)

2.2.1 First-order system:
Consider a first-order plant, i.e., the relationship between c(t)and m(t)is:

m(t) = c'(t)(8)

An example of this situation would be a car in which you can control the acceleration
(m(t)) and you wish to control the speed (c(t)).

If the setpoint (target) value is not moving, a P-controller alone can be used (although in
practice a Pl controller is used). If however, the setpoint is moving, a PD-controller (or a
PID controller) is required. For the sake of simplicity, we shall consider the case of

stationary setpoint for now. By stationary setpoint, we mean a setpoint that remains at
the same value for long durations of time (tending to infinity).

P-Controller:

m(t) = Kp *e() (9)

Using eq. (2, 8), €q.(9) can be re-written as:
e't) = — Kp * e(t) (10)

This is a first-order differential equation, which has the solution:

Kt

e(t) = ¢ 7 (11)
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Figure 3. first order decay system

Where eis Euler’s (pronounced as ‘oiler’s’) number. From Fig. 3, One can now see why
a P-Controller alone would be enough for a first-order system. Consider again, the case
of controlling the speed of the car by manipulating the acceleration. When speed is
below the target, the acceleration value is large. As the speed value gets closer to the
target, the acceleration is reduced. When the speed is at the target, the acceleration is 0
and hence the car’s speed stops changing. In reality, however, aerodynamic drag,
friction in the internal mechanisms and so on are unknown and therefore must be
accounted for in real-time. This is akin to the gravitational force against which the hand
must move the rock from the intuitive example section. Hence, an I component with a
small gain is added to ensure that the system actually reaches the target in the face of
forces that can’t be accounted for or haven’t been accounted for.

Non-stationary setpoint scenario:

We take a short digression from the main topic to give the reader some idea about what
we do when the setpoint is not stationary. Note that this particular section does not
follow an atheoretical approach for the sake of brevity. It is possible to arrive at the
answer through atheoretical means, which the author leaves as an exercise for the
reader should the reader want to find said approach.

Note to the reader: A control system designed to hit a stationary setpoint is usually
known as a regulator, while one designed to follow a moving setpoint is known as a

tracker.

In a first-order plant, if the target setpoint g(t)is moving, we add a derivative
component to match the rate of change of the target itself:

e(®) = g — c@® (i)



Se') = g'(t) — m@ ...

What we’d like to have is that the expression for error rate should remain the same as
before;

e'(t) = — K *e(t) ...(iii)

Consider that m(t) = Kp *e(t) + K, * e'(t). If we rewrite g'(t) = f * e'(t), where f

is some multiplying factor ( f < Kd + 1), we get:
e'(t) = f*e — Kp* e(t) — Kd* e'(t) ...(iv)

— t * Kp

>e'(t) =

Consider the case where g'(t)is 0 (setpoint not moving). The system simply reduces to:

K .
e'(t) = — ) e(t) (i)
Effectively reducing the P-gain. However, if g'(t)>0, such that >0, then:
1+K,>1+K —f ... (vii)

K, K
A+K,— ) > A+K) ... (viii)

Which is essentially increasing the gain in the expression for static setpoint, thus
making the system approach the target point faster. If <0, the reverse would be true.
Hence adding a D component to a P controller can improve the tracking ability of the
controller.



2.2.2 Second-order system:

Now, consider a second-order plant, i.e., the relationship between c(t)and m(t)is:
m(t) = c"(t) (12)

An example of this situation would be a person trying to stand upright in a train,
assuming they can control the torque on the body through their feet or by using their
arms to hold on to things(m(t)) and is trying to control the angular position (c(t)).
We again consider the simple case of a stationary setpoint.

P-Controller:

m(t) = Kp* e(t) (13)

Using eq. (2, 12), (13) can be re-written as:

') = —K *e®) (14)

In the intuitive approach section, we simply stated that this equation corresponds to
simple harmonic motion. Here, we will show why it results in simple harmonic motion.

In eq. (14), taking Laplace on both sides (in the preface, basics of Laplace transforms
are stated as a requirement.



sS*E(s) — s *e(0) — e(0) = — K, * E(s)
Where E(s)is the Laplace transform of e(t).

= E(s) * (55 + K) = s*e(0) + €0

_ _s%e(0) + \/7 e'(0)
(s +Kp) K}D (s +Kp)

Taking Laplace inverse on both sides, we get:

(15)

0

.. (ii)

e(t) = e(0) * cos(\/ITp* t) + e'(0) * sin(\/ITP* t)/\/lTp (16)

Notice that e(0)refers to the error at t=0, and e'(0)refers to the rate at which the error
reduces (or the rate at which we approach the target) at t = 0. If we go back to the
pendulum example, usually, the pendulum either begins from an extreme position with
no speed(e(0) = 1, e'(0) = 0)or from the mean position with some finite speed

(e(0) = 0, e'(0) # 0). The analysis remains the same regardless of which case we

consider. Fore(0) = 1, e'(0) = 0:

e(t) = e(0) * cos(\/sz* t) (17)

Fore(0) =0, e'(0) # 0:

e(t) = e'(0) * sin(\/l(: * t)/\/ITp (18)
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Figure 4: P-controller oscillations

In Fig. 4, the state is the state of the controlled variable. The controlled variable
oscillates around the mean position (target). However, what we’d like to see is a
waveform in which the error goes to 0 with time. Let us imagine what the possible
waveforms for this would be. For the sake of simplicity, let the P-Controller-only
waveform look like this:

e(t) = sin(t) ()]
1) One possible variation to the above waveform that would bring it to 0 is:
e(t) = (1 — K *t) * sin(t) ... (i)
I VAN A sy AN A
5 VARV At \/

Figure 5: linear decay multiplier
In this, the amplitude of the error begins from one and then linearly falls off to 0.
However, as shown by Fig. 5, there is a problem with this waveform design: the
error amplitude grows again after crossing 0.



2) As we don’t want the error to start increasing at any point, we essentially want a

multiplying factor that decays asymptotically (tends towards 0 but never reaches

-Kt
0). A simple asymptotic decay curveis € 7.

e(t) = & ¥ sin(t) .. (i)

/\ A A s .
\‘/,,-&/_,,l/__,,\lh, . o

variable
[=]

o 2 4 6 8 10
time

Figure 6: Exponential decay multiplier

As shown in Fig. 6, the amplitude initially tapers off quickly but then slows down
and reaches the time axis slowly. This behavior can be tuned by tuning the
exponent of the multiplier.
But this is an expression for e(t). For the controller, we need the expression for m(t)
because that is the manipulated variable (what we actually manipulate).
Consider the system (the analysis is similar if you chose to start with the cosine
function):

e(t) = ¢ o x Sin(Kft) (19)

Where Ke, Kf are some gains.Taking Laplace on both sides,

Kf
E(s) = S (i)
(s+ Ke) +Kf

SE(S) * (s + 2%K *s + K62+Kf2)=1(

...(ii)
f
= s'E(s) + 2*K *sE(s) + (K + KfZ)E(s) = K, ...{ii)



> — (SE(s) — s *e(0) — K D= K’ +K fZ)E(s) + 2*K * (sE(s) — e(0))
.(iv)

2 2 c v .
LetKe +Kf=Kpand2 K =K,
= — (szE(s) — s *e(0) — Kf) = KP*E(S) + Kd* (sE(s) — e(0)) (V)

Since we started with a sin function instead of a cosine function, the error at t=0 is 0,
i.e., e(0)=0.As Kf = e'(0)(found by taking derivative of Eq. (19) at t=0):

=> — (szE(s) — s*e(0) — €'(0) = Kp* E(s) + Kd* (SE(s) — e(0)) N Y))

And then take the Laplace inverse:

—e'(® =K *e(®) + K,* e'(t)...(vii)

From eq. (2), — e"(t) = m(t);

mt) =K *e(®) + K,* e (20)

Eq. (20) is essentially a PD controller.

The atheoretical analysis for the integral component has been left out for the sake of
brevity, but a heuristic explanation is as follows: The manipulated variable m(t) may not
be exactly what goes to the output, i.e., there may be some drag that we can’t account
for.

m(t) = Kp Te(t) + K, *e'(t) drag ...(i)

The integral term is essentially accounting for this drag force. As we don’t actually know
the value of this drag force, we must find it in an iterative fashion. Assume that our
estimate of the drag force at time step ‘n’ is dragn, then:

dragn = K ,n* e(t) + dragn_1 ...(i)

gai



Where Kgain is a new gain used to change the drag estimate using a fraction of the

instantaneous error. This is an iterative method towards finding the drag. For roughly
continuous time systems, It can be re-written as :

T

drag(T) = K .. [e(t)dt ....(iii))
0

Therefore the overall equation for the manipulated variable becomes:

T
m(e) =K *e® + K, *e(®) + Kife(t)dt (20)
0

There is still one small thing left, which is, strictly speaking, neither a part of the
analytical nor the intuitive section, but is still included here because the author felt that
was appropriate; How does one deal with moving set points in case of second-order
systems? The answer is fairly simple: we split the control system into 2 first-order
systems. This is mathematically the same as having a PID-DD (Double derivative)
system but it is easier to work with practically. In such cascaded systems, we first tune
the inner loop, which is the first-order system controlling the manipulated variable
directly, and then tune the outer loop, which controls the command sent to the inner
loop controller. Fig. 7 shows an example of such a system through a block diagram.
Angle -> Rate Rate -> Motor Output

Output

Motors |—»

Figure 7: cascaded control systems used in the Ardupilot Flight controller for angle control of drone
Reference: https.//ardupilot.org/dev/docs/apmcopter-programming-attitude-control-2.html

This is widely used in flight controllers for aerial vehicles. The inner loop( generally the
loop that is closer to the actual manipulated variables, in this case, the PID loop on the
right hand side) controls the rate of change of orientation by controlling the flaps or
motor speeds, while the outer loop (left) controls the orientation by sending rate
commands to the inner loop. There are several advantages to following such an
approach:



1) Such systems are easier to tune, as one only has to tune 2-3 gains (at most) at a
time instead of 4 as in the case of PID-DD. Usually, we tune the inner loops first
and the outer loop afterwards.

2) The cascading technique works well for any system order. For example, position
control would add another 2 orders to the quadcopter’s plant model and thus
require 2 more orders on the control side. We’d run out of humanly readable
acronyms if we tried creating a system that directly converts a position command
to a motor command.

3) ltis easier to swap out the loops in the controllers. For example, if the innermost
loop were to control flap positions instead of motor speeds, we could simply
swap out the gains for the innermost loop without affecting the outer loops. As far
as the outer loops are concerned, nothing at all has changed. This makes the
control system modular and makes modifications/improvements easy.

3. Towards tuning a system using PID controller

3.1 What is the order of the plant model of my system?
In most circumstances, one should be able to analytically find the plant order by looking
at the relationship between the controlled variable and the manipulated variable.
However, in some cases, it may be too convoluted to find the system order using an
analytical approach but may be convenient to find it using a trial and error approach
(or we're just too lazy). It should also be noted that it is possible to solve most control



problems by using cascaded control systems, should you encounter a problem of order
higher than 2.

To estimate the order of the system, simply set the manipulated variable to a constant
value.
1) If the controlled variable’s value increases exponentially, it is likely a 2nd (or
higher) order system. An example of this would be the control of position by
manipulating acceleration.

2) If the controlled variable’s value increases linearly, it is likely a 1st order system.
An example of this would be to control the speed by manipulating acceleration.

3) If the controlled variable’s value increases initially but then settles to a constant
value, it is a first order system with it’'s pole far from origin. A system like this, for
low frequencies, appears like a 0 order system but behaves like a first-order
system for high-frequency perturbations.

3.2 Things to check before you start designing the controller:

3.2.1 Is my system even controllable?:

In the subject of control systems there exists a concept known as “controllability”.
The formal definition requires some prior knowledge of state-space methods,
however, in lay terms, it can be understood as follows: A system may have
multiple things that can be manipulated (like a machine with multiple knobs), but
it is possible that not all inputs are effective in controlling what you wish to
control. Reductio ad absurdum: Try controlling the speed of a car by controlling
the music volume.

It is also possible that you may not be controlling what you think you're
controlling.
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Figure 8: Speed-Torque curve of a VFD controlled induction motor
Reference: https://www.sciencedirect.com/topics/engineering/induction-motor

For example, in the case of a car with an induction motor coupled to a variable
frequency drive, the maximum torque of the system is constant up to a certain
point, after which the torque has an inverse relationship with speed as shown in
Fig. 8. Therefore if you assume that you have control over the torque at all
speeds, your system will perform poorly beyond the speed where the torque has
an inverse relationship with speed.

This is specific to electrical engineering: In some cases, it is also possible that
the system (usually electrical systems that work with reactive power), on the
application of constant input, appears to rise to a value and then oscillate around
that particular value, and/or drops rapidly or climbs rapidly to a new value if the
load is changed. This is usually due to a phase mismatch in the power
demand-supply between the source and load; the power demand and supply are
out of phase with each other. Such issues should be rectified before designing a
controller for the plant by testing the system with a constant input.

3.2.2 State estimation issues:

In reference to closed-loop control systems, the control system is nothing without
the state estimation system that provides the feedback. The state estimation
systems may be very simple in case of tasks like speed control of a motor, or
very complex in case of tasks like autonomous driving of a car, requiring data
fusion from several sensors to make the system robust against sensor drift,
variance or all-out sensor failures. It is also possible that there may be a time-lag
between when the state changes and when the system becomes aware of the
change. This can be due to low-pass filtering on the sensor data to remove white



noise, or it could be due to the time it takes for the sensor to process the
information; for example, in GPS systems, there exists a time lag of 0.1-0.2
seconds(depending on what kind of update rate you use) in the position data.
Such time lag, if known, should be compensated for within the state estimation
system itself.

To demonstrate the importance of a good, reliable state estimation system, let us
see the effect of drift, variance, latency, excessive low-pass filtering, and low
controller update rate on the quality of the control exercised by the same control
system under different circumstances.

We will use a 2" order system for this study. As a baseline, Fig. 9 demonstrates
the response of a tuned PID controller:
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Figure 9: Ideal PID tune

1) Now, let us add drift to the state estimate. Note that a drift here refers to the
state values moving away from the true value with a magnitude and direction that



may be random and change in real-time. Drift is a natural phenomenon for
sensors. It affects all sensors regardless of the vendor and is caused by physical
changes in the sensor. Unless there exists another source of information, it
remains difficult or impossible to correct for the drift.
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Figure 10: Effect of drift on control system response

Fig. 10 shows that the apparent state, i.e., the state that is reported to the control
system appears to be tracking just the same as before, however, since reported
value is drifting away from the true value, the actual state diverges away from the
setpoint.

2) Consider the case of variance in the state estimate. Pragmatically speaking,
variance in a variable can be thought of as random but bounded oscillations
around the true value of the variable. In this example, we add gaussian noise
with 0 mean and 0.5 variance (large variance for exaggerated results):
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Figure 11: Effect of variance on control system response
Fig. 11 shows that while the system’s inherent inertia may prevent the system
from tracking the incorrect state estimate, the system still deviates from the
setpoint.
3) Consider the scenario where excessive low pass filtering is applied to the
state-estimate. Low pass filtering is usually done to remove the variance in the



state and smoothen out the data. We have put a 1 Hz low pass filter on the state
estimate to exaggerate the problem. Usually, a little bit of low pass filtering is
required to remove the variance. This example is simply to show what happens
when there is too much of it:
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Figure 12:Effect of excessive low pass filtering on control system response

Fig. 12 shows that the true state begins to oscillate. This happens because there
is a large phase and gain margin between the true state and the apparent state.
(Phase margin: phase difference between 2 quantities. Gain margin: log(ratio of
2 quantities. If you are unfamiliar with the above 2 concepts, refer to this video:
https://www.youtube.com/watch?v=ThoA4amCAX4 (Brian Douglas, gain and
phase margins explained). Since the control system responds to the apparent
state and not the true state, its control outputs try to bring the apparent state to
the setpoint. However, as the apparent state is a low-passed version of the true
state, and the true state deviates further and further away, so does the apparent
state, and to the system, it would almost appear that it is not possible to control
such a system. The reader may understand this as the perception and control
being out of synchronism with each other.

4) Consider the case of there being a time-lag between the true state and the
apparent state. This can happen due to communication delays. Such errors are


https://www.youtube.com/watch?v=ThoA4amCAX4

usually not that common anymore but the reader should know what they look
like:
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Figure 13: Effect of time lag on control system response

As you can see in Fig 13, the apparent state and true state are slightly out of
phase with each other. This causes the system to take longer to settle.

5) Now, let us consider what happens if the update rate of the state estimator
(and therefore the control system) is not sufficiently high. In the ideal case, the
controller update rate was 100 Hz. Consider the same system but with a
controller update rate of 3 Hz:
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Figure 14: Effect of low controller update rate on system response
As you can see in Fig. 14, the system starts oscillating and no longer tries to
track the setpoint. Essentially, a smaller control time or a higher controller update



rate allows the controller to make mistakes and also correct them pretty much as
soon as they are made. However, when the controller update rate gets too low,
such a situation can arise. Mitigating this issue requires lowering the gains
significantly to bring the system back under control. The following is the response
for the same system but with 10 times smaller P and D gains:
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Figure 15: Mitigating low controller update rate by reducing gains
Fig. 15 shows that in an effort to mitigate the low update rate issue, the controller

now takes a longer amount of time to converge.

3.3 PID configuration:
To begin with, the reader should first know what the order of the system is as well as
whether the controller is supposed to act as a tracker or regulator (refer to the analytical
approach to PID: the first-order system for clarification).

1)
2)
3)
4)
5)

6)

First-order Regulator: Use a P or Pl system

First-order Tracker: Use a PD or PID system

Second-order Regulator: Use a PID system

Second-order Tracker: Use cascaded P-PID or PD-PID system.

For higher-order regulator or tracker, use a cascade of PD systems with the final
system being a PID system. The last system is kept as a PID system because
the outer loops assume that there is no drag in the system. All the drag is dealt
with by the final (innermost) loop. This also makes tuning easier, as once the
innermost loop is tuned to perfection, the outer loops become fairly easy to tune.
first-order systems with poles far from origin: Use a feed-forward + PI or PID
controller.



3.4 Tuning:
Tuning a controller in the real world can be tricky and sometimes dangerous, whereas,
in simulated systems, there is no risk of damage to equipment; the experiment can be
repeated any number of times without causing fatigue to the hardware and this can all
be done from the comfort of your couch. Nonetheless, we’d prefer not to hunt for a
starting point in either case. The rules described ahead are rules-of-thumb developed
by the author that can be applied to both real as well as simulated systems. In this
subsection, second and first-order systems will be covered first and the first-order
systems with poles far from the origin will be covered at the end.

If you have a mathematical model of the plant, then inverting the transfer function for the
plant should automatically reveal good starting values for all the gains! The logic for this
is fairly simple, if you multiply the plant transfer function with its own inverse you’ll
simply end up with the overall transfer function becoming 1 (no phase or gain margin to
worry about!). The author assumes that this isn’t feasible for the reader either because
the reader doesn’t know how to do this, or the reader is simply too lazy to figure out the
math.

3.4.1 For Second and first-order systems:

Regardless of whether you're building a tracker or a regulator, you will need to have
some P-gain, to begin with. Consider that the maximum deviation that you expect the
system to recover from is + E . the maximum output that the system can provide is

+ Mmax (we use capital e, m to maintain consistency with e, m being taken as the error

variable and the manipulated variable respectively).

The initial value of P gain should be such that the system output is 1-10% of the full
output when the error is maximum, i.e.:

K =01*M [E (21)

max

For real-world second-order systems, there should be a very small D-gain to prevent the
system from completely going out of control in case the initial P-gain turns out to be too
much. One may also use this D-gain value in the simulation but it is not necessary.
Consider that the maximum rate of change of error that could be tolerated is + E'm ,

ax

then, the initial value of D gain should be such that the system output is 1-10% of the
full output when the error rate is maximum, i.e.:



K, =01*M_ JE (22)

max

Now, with these initial values, you should expect a sluggish system performance as
shown in Fig. 16,17:
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Figure 16: Un-tuned controller on 2nd order system Figure 17.0n 1st order system
This is acceptable, as we’d rather have a sluggish system than a system that keeps
going out of control. If your system appears to oscillate, with the oscillations increasing
in magnitude, start with (both, in case of 2nd order system) values (P, D) at 1% instead
of 10%. If it oscillates even at 1%, drop it to 0.1%. If it still oscillates, it is possible that
there is something wrong with the system, as you’re getting oscillations by applying just
0.1% of the full output. Check whether your limits for the maximum output are correct
and whether your system is even controllable using this control input. It could also be a
state estimation related issue. Issues related to state estimation have been highlighted
in the previous subsection.

3.4.1.1 Second-order systems (regulator-control):

Assuming that you attained the desired “sluggish” response from the system, start by
increasing the value of the P-gain(and only P-gain) in increments of 1% until the system
begins to oscillate with constant amplitude (a slowly decreasing amplitude is also a
good place to stop). This point is known as the stability limit. This value of P-gain at
the stability limit is K . Further, measure the oscillation time period T of the system at

the stability limit. Using these 2 numbers, one can find the values for the derivative time
constant Td and the integral time constant Tl_ and hence the values for Kd, Kl_ from Fig.

18, which has been taken from Wikipedia, specifically to spite the people who find it
unacceptable to cite Wikipedia.



Ziegler-Nichols method!']

Control Type K, T: Ty K; K,
P 0.5K, - — — -
Pl 0.45K, T,/1.2 — 0.54K, /T, —
PD 0.8K, - T,/8 - K,T,/10
classic PIDI] 06K, T,/2  T,/8 1.2K, /T, 3K, T, /40

Pessen Integral Rule?! | 7K, /10 2T, /5 3T,/20 1.75K,/T, 21K,T,/200
some overshoot?! K,/3 T,/2 T,/3 0.666K,/T, K,T,/9
no overshoot!?] K.,/5 T,/2 | T,/3 (2/5K,/T, K,T,/15

Figure 18: Tuning parameters table

However, the author also uses another heuristic approach when tuning PID systems.
Once K has been found,

K =05*K, (23)

Now increase the K p of the system until the system overshoots only once (and

preferably does not undershoot too much) like so:
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Figure 19.



If your system has some drag, you're likely to see the output hang under the setpoint as
shown by Fig. 20:
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Figure 20: Effect of drag on a tuned PD controller
If this is the case, an | component will be required. Set its initial value as:

K=001*K  (24)

The idea is to start with 1% of Kp and then increment the value by 1% until you see an

output as shown by Fig. 21:
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Figure 21 Tuned PID controller

Note that tracking for a 2nd (or higher) order system is done better by using cascaded
1st order controllers (P-PD, P-PID, or PD-PID) as compared to the tracking done by a
single PID controller.



3.4.1.2 First-order systems:

First-order systems may be used as standalone controllers or in a cascaded system. In
this section, we will consider the case of tuning a first-order system as a regulator
(stand-alone) as well as a tracker. In both cases, tuning of the I-gain remains similar to
the tuning of I-gain described in the previous sub-section.

In first-order systems, it may be tempting to set the P-gain to an extremely high value,
because after all, that gain corresponds to the rate of decay. There appears to be no
oscillatory component in the equations that describe the first-order dynamics and hence
there appears to be no upper limit to the P-gain value. However, in real-world systems,
this is not the case. There does indeed exist an upper limit on the P-gain value and it is
dictated by the update rate of the system. Consider examples shown by Fig. 22, 23, one
where the controller update rate is 10 Hz (left) and the other where the controller update
rate is 1 Hz, for the same value of Kp.
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Figure 22,23:Same P gain for control frequency 10Hz (left), 1Hz(right)

In most systems, the update rates are above 10 Hz, and so reaching this upper limit on
the P-gain will appear as high-frequency oscillations. The oscillation frequency will be
about half the controller update frequency. The author leaves the reason for this as an
exercise for the reader(hint: Nyquist frequency). When you find this point, divide the Kp

by 2. The oscillations should go away and the system should perform reasonably well.

For a tracking system, you should set the reference signal to a sinusoidal signal of the
maximum frequency up to which you expect the system to track properly. For most
mechanical or electromechanical systems, the inverse of the time constant serves as a
good starting point for the maximum operating frequency.



A P controller with no D gain (left) and a tuned D-gain(right) have been shown side by
side in Fig. 24, 25:
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Figure 24,25:Effect of D gain on phase margin. Left: no D gain, right: tuned D gain

Notice that the peaks of the sinusoid on the controller with a tuned D gain are closer to
the peaks (in terms of phase difference) of the reference signal as compared to the
controller with no D gain. You can also notice the difference in the waveform shape near
t=0 for both the controllers. When there is no D-gain, the controller tends to take a while
to start tracking, whereas, in case of a tuned D-gain, the controller starts tracking right
off the bat at t=0.

The process for tuning the D gain is also fairly simple. Assuming you already have the
P-gain tuned for regulation, start with a D-gain equal to 1% of the P-gain. Increase this
gain in increments of 1% until the system starts oscillating at high frequency (usually
half the frequency at which the controller updates). The high-frequency oscillations for a
system with a controller update frequency of 100 Hz would appear as shown by Fig. 26:
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Figure 26. Effect of excessive D gain on 1st order controller



You should stop increasing the D-gain at this point and maybe even dial it back a little.
In case the system oscillates like this from the very start (at D-gain equal to 1% of
P-gain) keep reducing the D-gain until the oscillations are no longer present. Even a
small amount of D-gain is sufficient to improve tracking performance.

3.4.2 First-order systems with poles far from origin:

We did not discuss these systems separately in the analytical or intuitive section
because these systems are simply a combination of a 0 order system with a 1st order
system. Considering that 1st and 2nd order systems are complex on their own, the
author thought it better to discuss these systems through examples in the tuning
section. Further, there is no reason that you should only use PID with such systems, as
we’ll see later in this section.

These systems are commonly found in electrical or electromechanical machines such
as motors, dc-dc voltage converters, and so on. They behave like low-pass filters from a
frequency domain perspective (which you can actually infer for yourself by looking at its
transfer function and comparing it to the transfer function of a low pass filter). The
reader, however, may not be familiar with such systems, so we’ll study this type of
system using an example of a dc motor (shunt type).

The speed equation for a DC shunt motor is given by :

N=ke,k (25)

Where k is a constant of proportionality, N is speed, and ¢ ) is the back emf. At the

steady-state, the terminal voltage is roughly the same as the back emf (in a state of no
load-torque).
Therefore, at steady state,

N=kvV, (26)

Note that this relationship indicates that if we apply Vt volts at the input, we will get k Vt

speed at the output during steady-state OR, if we want the motor to spin at speed N, we
have to provide N/k volts at the input. Here, 1/kis known as the feed-forward gain. The



feedforward gain directly converts the setpoint value to a control input that would
achieve the desired setpoint value.

For our example system, we have set the feed-forward gain to 0.5. The reader should
note that the feed-forward gain is not always a constant value. It can be a function of
some other parameter as well, for example, in a buck converter, the feed-forward gain
would depend on the input voltage. For this reason, it is usually known as a
feed-forward term rather than a feed-forward gain. Sometimes this term can also be a
nonlinear function between the input and the output. In any case, it is usually possible to
find out the feed-forward term by feeding values at the input and noting the values at the
output.

Considering that the manipulated variable is m(t), the setpoint is g(t), the control law
for this system is as follows:

m(©) = K, * g(® (27)

On the example system, applying an input of a constant value of 5 (setpoint) results in
the response shown by Fig. 27:
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Figure 27. Constant input response of first order system with poles far from origin



At this point, one might say something like: “why do we bother with anything beyond this
when this works just fine?” To which the author responds with Fig. 28:

the feed-forward
term will take
care of everything
itisjusta
matter of finding
the feed-forward term

dlorclosod ‘F '
neeaiorcioseu-100 g
controlhere < t!‘

Figure 28: You are not the clown, you are the entire circus.

The downside of using (only) the feed-forward term method is that it is essentially an
open-loop controller, i.e., the system does not actually know what the output value is
and will not correct it in case of disturbances. This can be also be understood as the
system having an incorrect feed-forward term. Let us see what happens when the
feed-forward term is off by 5%:
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Figure 29: Effect of wrong feed-forward term on response of First order system with poles far from origin



Fig. 29 shows that the output of the system just hangs under the setpoint value,
complacent in its achievement, having no idea of what the reality is.

In order to deal with this issue, a Pl controller (stand-alone) can be used to achieve a
similar response. The integral term tends to take care of remembering the bare
minimum input required to achieve the desired output, while the P-gain takes care of
achieving the desired output in a reasonable time. To begin tuning the PI controller, set
the initial value of P and | gain to the value described in eq. (21). Initially, the output may
seem to hang under the setpoint value as shown in Fig. 30:

5- _______________________________

—— state
—-—- setpoint

variable

-1 0 1 2 3 3 5 6
time
Figure 30: Initial response of PI controller
This is okay. Now we keep increasing the value of P and | gain (keeping both at the

same value) until we achieve a response similar to that shown by Fig. 31:
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Figure 31: Tuned response of Pl controller



From Fig. 31, you may notice that the response of this system looks similar to the
response of the system with only the feed-forward gain. At this point the reader may
wonder why we bothered with the feed-forward method if this could achieve the same
results. To see why let us inject some variance (noise) into the state estimation system
and see what happens:

5-

— state
--=- setpoint

variable

time
Figure 32: Response of Pl controller to noise in state estimation data
Fig. 32 shows that the output of the system starts oscillating due to the noise in the
state estimate.

So how do we solve this problem? The answer is fairly simple; we use both at the same
time. The idea is that if we use the feed-forward and closed-loop control at the same
time, the gains required for the closed-loop control would become smaller, therefore it
would be less sensitive to noise in sensor data. At the same time, due to the presence
of the closed-loop controller, we can tolerate errors in the feed-forward term to a major
extent. For a tuned system, Fig. 33 shows the response for a feed-forward term that is
off by 10% and Fig. 34 shows the response for a system where feed-forward term is off
by 10% and there is noise in the sensor data:
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Figure 33,34:Resilience of combined feed-forward and Pl controller to noise and wrong gain value
Fig. 33, 34 show that even when both the problems (feed-forward term error and sensor
noise) are thrown at it at the same time, the system still performs reasonably well,
converging towards the desired value with very small oscillations. The control law for
this system is as follows:

m(t) = Kf

g9 + K *e() + K * [e(t)dt (28)
p Ly

3.4.2.1 The bounty hunter method

There is, however, one more way to combine the open and closed-loop control, which is
to use closed-loop control to hunt for the true value of the feed-forward term. In this
approach, the control law remains the same as eq. (27), however there is an addition of

a gain adjustment system to it. If the feed-forward gain is anf at the n™ time step, then:

n n
K = Kff + rateleammg* e(t) * dt (29)

Where rateleammgrefers to the learning rate of the system. The reason for multiplying

the error by the control loop time “dt” is to make adjusting the learning rate more
intuitive. Essentially, if the error were to remain at the value of 4 for 1 second, and an
adjustment of 0.4 was required, the learning rate would be set to 0.1. It is also
acceptable to directly incorporate the control loop time dt into the learning rate, but then
one would have to keep adjusting the learning rate if the control loop frequency
changes.



Fig. 35, 46 show the performance of a gain hunting system:
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Figure 35:Response of gain hunting system Figure 36: Predicted gain vs true gain across time.

Setting the learning rate for a hunting system is fairly simple as long as you have a
ball-park estimate of how off the feed-forward term can be. If your feed-forward term is
off by 10-20%, the learning rate can be set to 0.1 . If this produces oscillatory output,
reduce the learning rate to 0.01 and try again. Keep reducing the learning rate until the
system starts converging.

The reader should note that the methods provided here are not the only ways to
combine open and closed loop control. In this field, we often combine fuzzy logic
controllers with PID, where the fuzzy logic is used to tune the gains of the PID. In much
the same way, fuzzy logic, neural networks, Genetic algorithms, and even stochastic
gradient descent algorithms can be used to hunt for the feed-forward term.

This brings us to the end of the document. | hope you enjoyed reading this body of
work. Note that this isn’t a comprehensive guide to control systems, but rather an
introductory one to get students off the ground and help them understand the underlying
intuition behind the generally hand-wavy math on the chalkboard. If you are an
academic researcher/author and have suggestions (apart from removing the
humor-based content), you may contact me on linkedIn.

What is it

Why did i write it

What makes it special
Any other advertisements.



Hi all,

I’'m sharing a control systems tutorial that | started writing back in June of 2020. The
target audience is anyone that has just started learning about control systems.

The objective of this document is to give the reader some insight into not just how
control systems work but also why they are the way they are as well as how certain
issues can be identified and dealt with.

| do this by giving the reader an intuitive understanding first, and then formulating the
math from that intuition. As the document is somewhat long, | embedded some humour
to keep the reader engaged.

The same document is available on my website as well: sidharthtalia.com

Special thanks go to Prof. Sandeep Banerjee for motivating me to write this document
and providing feedback, as well as to Shrreya Rawat for proof-reading.



